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Project Overview: High Temperature Conversion

• Objective: Provide a fundamental science-based understanding of 
the high-temperature conversion of low-cost, complex mixtures of 
biomass and waste feedstocks for Sustainable Aviation Fuels (SAF) 
and related co-products

• Conversion Processes:
– Fast Pyrolysis
– Gasification

• Targeted Outcomes: Knowledge and tools to enable low-cost 
feedstocks utilization, increased process reliability, and optimized 
reactor design to achieve BETO 2030 and 2050 Performance Goals
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FCIC Task Organization

Feedstock Preprocessing Conversion

Task 8: TEA/LCA
Task 9: FMEA

Task 2: Feedstock 
Variability

Task 5: 
Preprocessing

Task 3: Materials Handling

Task 6: High-Temperature 
Conversion

Task 1: Materials of Construction

Task 4: Data Integration

Task 7: Low-Temperature 
Conversion

Task X: Project Management

Enabling Tasks

Task 1: Materials of Construction: Specify materials that 
do not wear, or break at unacceptable rates

Task 2: Feedstock Variability: Quantify & understand the 
sources of biomass resource and feedstock variability

Task 3: Materials Handling: Develop tools that enable 
continuous, steady, trouble free feed into reactors  

Task 4: Data Integration: Ensure the data generated in 
the FCIC are curated and stored – FAIR guidelines

Task 5: Preprocessing: Enable well-defined and 
homogeneous feedstock from variable biomass resources 

Task 6 & 7: Conversion (High- & Low-Temp Pathways): 
Produce intermediates for further processing

Task 8:Crosscutting Analyses TEA/LCA: Valuation of 
intermediate streams & quantify variability impact

Task X: Project Management: Provide scientific 
leadership and organizational project management

Task 9:Failure Mode & Effects Analysis (FMEA): 
Standardized approach for assessing attribute criticality
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Thermo-Chemical Conversion to Sustainable Aviation Fuel
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Technical Approaches to Achieve Impact

Quality by Design (QbD)

Multi-Scale Model-
Experiment Coupling

Industry Input-Output

Technical Approaches

Critical Material Attributes
(CMAs)

Critical Quality Attributes 
(CQAs)Process

Meso Scale
[Feedstock 
Particles]

Reactor 
Scale

Industry Interviews on
Needs & Challenges

Tech Transfer of Outcomes 
to Bioenergy Industry

Science-to-
Application

Impact

Task Structure

Sub-Task 6.10.
Liquid Intermediate 

CQAs 

Sub-Task 6.11.
High Throughput 

Conversion Screening

Sub-Task 6.12.
Hierarchical Conversion 
Modeling Development

Sub-Task 6.13.
Experimental Validation 
of Hierarchical Models

8Task 6 – High Temperature Conversion



Validation is Critical to Success

• Our primary goal is to mitigate risks with conversions of highly complex and diverse feedstocks
• Risk mitigation for our approach is … VALIDATION AT MULTIPLE SCALES
• Experimental-modeling coupling strengthens with every iteration
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2 – Progress and Outcomes

Fast Pyrolysis



Challenges in Fast Pyrolysis of Biomass
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Physical 
Characteristics

Chemical 
Speciation

Aerodynamic 
Properties

Other 
Properties

Pre-
Processing

Fast 
Pyrolysis

Downstream 
Upgrading

(Bardon and Hazel, 2014)

Case Study in Feedstock Variability: 
13-yr vs. 23-yr old tree*

Challenges toward goal of sustainable low life-cycle C renewable fuels from biomass:
• Feedstock Variability: Biomass has inherent variability as function of source, geography, climate, species, etc.
• Optimal Thermo-Chemical Conversion Efficiency: Ideally, yield of fast pyrolysis oil is high & energy input is low
• Lowest Costs: “Waste” or “scrap” feedstock lowest cost (but often highest variability); reactors & processes must 

be robust to variable feedstocks to operate most cost effectively (and with maximum up time)

Approach:
Quality by 

Design 
(QbD)

Critical 
Material 

Attributes 
(CMAs)

Critical 
Quality 

Attributes 
(CQAs)

Critical Process 
Parameters

*bioenergy.labworks.org/labkey/FCIC/T.08.00 Cross-Cutting Analysis Overview Task 6 – High Temperature Conversion



Product Mass Yields from Fast Pyrolysis Experiments
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Note: bio-oil measured gravimetrically; condensable products measured by GC; 
water vapor as measured by a dew point analyzer; char collected by cyclone and hot filter.

Char

Light Gases

Bio-Oil

Water Vapor

Condensables

Fast Pyrolysis
Products

Fast Pyrolysis of Loblolly Pine Forest Residues 
in 2” Fluidized Bed Reactor (2FBR) at NREL

23-year-old and 13-year-old trees

Anatomical Fractions of 
Forest Residues

13-year

Loblolly Pine
Tree Age

23-year
Needles

Branch/Twigs

Stem Wood

Bark
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Critical Material Attributes (CMAs) of Forest Residues

Physical Characteristics
Particle shape/size, density, 

structure, porosity

Chemical Speciation
Lignin, hemicellulose, 

cellulose, moisture, ash, etc. 

Aerodynamic Properties
Density and aerodynamic 
properties (fluidization)

Other Properties
Surface properties (stickiness), 

attrition susceptibility

Characteristics (CMAs)

Feedstock
Particle
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Complex Chemistry Necessary:
Model Based on Kinetics by Debiagi et al.*

H2O
(1 reaction, 1 species)

Cellulose
(4 reactions, 2 species)

Hemicellulose
(6 reactions, 3 species)

Lignins
(8 reactions, 6 species)

Extractives
(3 reactions, 3 species)

“Metaplastic”
(10 reactions, 10 species)

G{COH2} loose CH2O
G{CO2} CO2
G{CO} CO
G{CH3OH} CH4O
G{CH4} CH4
G{C2H4} C2H4
G{C6H5OH} C6H6O
G{COH2} stiff CH2O
G{H2} H2
G{C2H6} C2H6

ACQUA H2O

TGL C57H100O7
TANN C15H12O7
ITANN C8H4O4

LIG C11H12O4
LIGC C15H14O4
LIGCC C15H14O4
LIGH C22H28O9
LIGO C20H22O10
LIGOH C19H22O8

GMSW C5H8O4
HCE1 C5H8O4
HCE2 C5H8O4

CELL C6H10O5
CELLA C6H10O5

Char
(1 species - Carbon)

“Tar” (Oil)
(22 species)

Light Gases
(7 species)

CHAR C

C2H4 C2H4
C2H6 C2H6
CH2O CH2O
CH4 CH4
CO CO
CO2 CO2
H2 H2

C2H3CHO C3H4O
C2H5CHO C3H6O
C2H5OH C2H6O
C5H8O4 C5H8O4
C6H10O5 C6H10O5
C6H5OCH3 C7H8O
C6H5OH C6H6O
C6H6O3 C6H6O3
C24H28O4 C24H28O4
CH2OHCH2CHO C3H6O2
CH2OHCHO C2H4O2
CH3CHO C2H4O
CH3CO2H C2H4O2
CH3OH CH4O
CHOCHO C2H2O2
CRESOL C7H8O
FURFURAL C5H4O2
H2O H2O
HCOOH CH2O2
MLINO C19H34O2
U2ME12 C13H22O2
VANILLIN C8H8O3

Fast 
Pyrolysis

*Paulo Debiagi, et al., "A predictive model of biochar formation and characterization." 
Journal of Analytical and Applied Pyrolysis, vol. 134, pp. 326-335, 2018. *Also see CRECK Modeling Group at Politecnico di Milano (creckmodeling.chem.polimi.it)

25 Reactants and Intermediates 31 Products

Ash Factor
adjusts for 
0-5% ash 
content
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Methodology Developed to Link Biomass Analyses to 
Debiagi Reactants: LIG-C vs. LIG-H vs. LIG-O Critical

H2O
(1 reaction, 1 species)

Cellulose
(4 reactions, 2 species)

Hemicellulose
(6 reactions, 3 species)

Lignins
(8 reactions, 6 species)

Extractives
(3 reactions, 3 species)

“Metaplastic”
(10 reactions, 10 species)

G{COH2} loose CH2O
G{CO2} CO2
G{CO} CO
G{CH3OH} CH4O
G{CH4} CH4
G{C2H4} C2H4
G{C6H5OH} C6H6O
G{COH2} stiff CH2O
G{H2} H2
G{C2H6} C2H6

ACQUA H2O

TGL C57H100O7
TANN C15H12O7
ITANN C8H4O4

LIG C11H12O4
LIGC C15H14O4
LIGCC C15H14O4
LIGH C22H28O9
LIGO C20H22O10
LIGOH C19H22O8

GMSW C5H8O4
HCE1 C5H8O4
HCE2 C5H8O4

CELL C6H10O5
CELLA C6H10O5

Fast 
Pyrolysis

25 Reactants and Intermediates

Ash Factor
adjusts for 
0-5% ash 
content

*Reference: Gavin Wiggins. BioComp: A web tool for estimating biomass 
composition. Version 22.02. Available at https://github.com/wigging/biocomp

An online tool was 
developed to determine 
the Debiagi reactants for 

biomass from ultimate 
and chemical analysis 

data.

Experimental biomass composition from ultimate and chemical analysis 
data utilized to determine critical apportionment into Debiagi reactants

Task 6 – High Temperature Conversion 15



Comparison of Model Predicted Oil Chemistry to 
Experimental Oil Analysis is Challenging – Efforts Ongoing

Char
(1 species - Carbon)

“Tar” (Oil)
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C2H5OH C2H6O
C5H8O4 C5H8O4
C6H10O5 C6H10O5
C6H5OCH3 C7H8O
C6H5OH C6H6O
C6H6O3 C6H6O3
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CH3CO2H C2H4O2
CH3OH CH4O
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H2O H2O
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MLINO C19H34O2
U2ME12 C13H22O2
VANILLIN C8H8O3

Fast 
Pyrolysis

31 Products

Ash Factor
adjusts for 
0-5% ash 
content

Critical Quality 
Attributes 
(CQAs)

Acidity

Stability

O Content

C Number
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FCIC Multiscale Computational Framework 

Outcome: Validated Multi-Scale Framework 
Includes Three Levels of Complexity & Capability for Range of Users

Hi-Fidelity Framework
CFD Model with Full Capture of Physics 

and Chemistry

Reduced-Order Framework
Rapid Execution on Typical 

Desktop/Laptop

Techno-Economic Analysis Module 
(e.g. ASPEN)

User-Friendly Toolset and/or Module Input

Consistent 
Kinetics 

and 
Approach

A validated, multiscale experimental & computational framework that allows biorefinery design engineers & operators 
to optimize productivity & control critical product quality attributes with variable incoming feedstock attributes.
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Validation Results Show Generally Good Agreement and 
Utility for Model Predictions of Complex Biomass Feedstocks
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Outcome: Utility for Techno-Economic Analysis
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Thinnings Residues Thinnings + 
Residues

Feedstock supply cost 
($/MT) $105.59 $117.85 $96.84

Feedstock preprocessing cost 
($/MT) $26.90 $28.54 $27.72

Delivered feedstock cost 
($/MT) $132.49 $146.39 $124.56

Biorefinery Fuel 
C Yield 26.4% 25.3% 25.9%

MFSP 
($/GGE) $5.23 $5.43 $5.08

Techno-Economic Analysis results for the conversion of 13-year-old whole 
thinnings, 23-year-old residues, and combined thinnings + residues.

Case Study in Feedstock Variability: 
13-yr vs. 23-yr old tree*

Task 6 – High Temperature Conversion*bioenergy.labworks.org/labkey/FCIC/T.08.00 Cross-Cutting Analysis Overview



2 – Progress and Outcomes

Gasification



Industry Input from 28 Companies Collected via 
Survey to Guide R&D

21

• 28 Industry technology providers provided feedback. 
They included gasification (G), pyrolysis (P), and other 
conversion technologies.

• The final products considered are liquid fuels, electricity, 
and other products (biochar, chemicals, gases).

• Feedback on CMAs was received and summarized.
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Gasification Capabilities Building with Multi-Scale 
Experimental and Modeling Approach Continuing

Fast Pyrolysis of Forest Residues
• Complex size and shaped particles
• Chemistry varies
• Particle shrinks to char
• Particle maintains structure
• Aerodynamics (fluidization) varies
• End product goal: oil
• C objective: maximize oil, minimize 

gases

Gasification of MSW
• Complex size and shaped particles
• Chemistry varies drastically
• Particles are consumed
• Particle morphology changes
• Aerodynamics (fluidization) varies
• End product goal: syngas
• C objective: maximize H2 (#1), CO 

(#2), minimize CO2 & tar

Fast Pyrolysis vs. Gasification: New Challenges 

NREL Research Gasifier

Plastic-Rich

Paper-Rich

As-received

MSW Feedstocks

Schematic from: Applied Energy, Vol: 241, 2019, pp 25-33, https://doi.org/10.1016/j.apenergy.2019.02.064 Task 6 – High Temperature Conversion 22



New Micro- and Macro-Scale Instruments Enable 
High-Throughput Studies of Individual Particles

23

Macro-Scale 
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Particle mass up to 2 g (resolution +/- 1 mg)
Temperatures up to 800ºC
Heating rates of 50ºC/sec.

Real-time online mass spectral analysis
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Micro-Scale 
Reactor

Particle mass: 10-30 mg
Temperatures up to 1000ºC

Real-time online mass spectral analysis
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Reactor-Scale Computational Fluid Dynamics Model 
Developed for Gasification of Biomass & Plastic Feedstocks
• A computational fluid dynamics (CFD) model of a 

gasification reactor predicts conversion to gas products 
for biomass and plastic feedstocks; the model has been 
validated with experimental results from a pilot scale 
reactor.

• The model has been validated with data from the 
Fluidized Air Blown Experimental Gasifier Reactor 
(FABER) in collaboration with Sotacarbo SpA -
Sustainable Energy Research Centre in Italy

Photo, Schematic, and MFiX CFD Model of FABER Gasification Reactor
Particle

Temperature (K)
Gas

Temperature (K)

mfix.netl.doe.gov

Validation of Co-Gasification of:
• Biomass (Eucalyptus) @24.9 kg/hr
• Plastic (Blupolymer) @ 34.9 kg/hr

Task 6 – High Temperature Conversion 24



3 – Impact



Impact
Fast Pyrolysis
• Comprehensive multiscale experimental & computational framework validated with forest residues

– Computational Fluid Dynamics (CFD) code (MFiX)
– Reduced-order code
– On-line (GitHub) tool for translating feedstock analysis to reactant inputs
– Techno-Economic Analysis (TEA) level code
– Detailed bio-oil chemistry products

• Tech Transfer of framework ongoing: 23 publications and 5 presentations including:
– TCBiomass, Denver, CO, April 19-21, 2022
– American Institute of Chemical Engineers (AIChE) Annual Meeting, Phoenix, AZ, Nov. 13-18, 2022
– 16th International Biomass Conference & Expo, Atlanta, GA, Feb. 28-March 2, 2023
– BETO Webinar: “Cost-Effectively Optimize and Scale Bioenergy Technologies with the Consortium for Computational Physics and 

Chemistry”, October 20, 2022 
[available to watch at www.youtube.com/watch?v=6IpMGfcAi8U]

• Industry stakeholders engaged on tech transfer of toolsets
Gasification
• Reactor-scale validation of gasification of plastic-biomass mixtures shows promise for capabilities to model 

complex low-cost feedstocks

Task 6 – High Temperature Conversion 26
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Summary: High Temperature Conversion

Objective: Provide a fundamental science-based understanding of the high-temperature 
conversion of low-cost, complex mixtures of biomass and waste feedstocks for Sustainable 
Aviation Fuels (SAF) and related co-products

27

Approach: Quality by Design (QbD), Multi-Scale Model-Experiment Coupling, Industry Input-Output

Fast Pyrolysis
• Outcomes

– A validated, multiscale experimental & 
computational framework for fast pyrolysis 
of forest residues feedstock blends

– Complex chemistry enabled via Debiagi 
kinetics and associated translational 
toolsets

• Impact
– Demonstrated utility in range of models: 

techno-economic analysis modules to full 
reactor computational fluid dynamic models

Gasification
• Progress

– Industry survey guiding R&D direction
– New tools enable high-throughput studies of 

conversion at micro- and macro-scales for 
validation at particle scales

– Recommissioning of national lab-based 
gasifier for experiments in process

• Impact
– Initial reactor-scale model validated with 

Sotacarbo shows promise for accounting for 
complex feedstock blends 

Task 6 – High Temperature Conversion



Quad Chart Overview
Timeline (current AOP cycle)
• October 1, 2021
• September 30, 2024

Project Goal
Provide a fundamental science-based understanding of the high-temperature 
conversion of low-cost, complex mixtures of biomass and waste feedstocks for 
Sustainable Aviation Fuels (SAF) and related co-products

End of Project Milestone
(1) Validated, high-throughput conversion screening pipeline covering broad 

conversion options; 
(2) Critical Quality Attritibutes (CQAs) and ranges for Catalytic Fast Pyrolysis 

(CFP) and gasification intermediates from forest residues and MSW, 
respectively, related to Critical Material Attributes (CMAs) for co-processing 
and fuel synthesis; 

(3) Validated, multi-scale computational framework to predict intermediate 
yields and chemistry for CFP and gasification vs. feedstock and air-to-fuel 
ratio. 

28

Project Partners
• 28 Industry partners participated in survey
• Debiagi/CRECK Group
• Sustainable Energy Research Centre (Italy)

Funding Mechanism
2021 Lab Call – FCIC Merit 
Review

FY22
Costed Total Award

DOE 
Funding

~$1,750k $1,750k/yr
across 6 NLs in 
Task 6

Project 
Cost 
Share *

NA NA

TRL at Project Start: 3
TRL at Project End: 5

Task 6 – High Temperature Conversion
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Responses to Previous Reviewers’ Comments

• Feedback from FY21 BETO Peer Review:
– The primary feedback from the FY21 BETO Peer Review 

was to include gasification as a pathway for 
thermochemical conversion.

• Response:
– Per feedback, Task 6 added gasification as a pathway.

30
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Abstract

The High-Temperature Conversion Task (Task 6) of the Feedstock-Conversion Interface 
Consortium (FCIC) addresses challenges with thermochemical conversion of diverse feedstocks.  
Conversion unit operations include fast pyrolysis and gasification.  Feedstocks range from 
complex mixtures of woody biomass (forest residues) to municipal solid waste (MSW).  The 
research identifies and quantifies the feedstock Critical Material Attributes (CMAs) and product 
Critical Quality Attributes (CMAs) consistent with the FCIC’s overarching approach embracing 
the Quality by Design methodology.  A primary outcome targeted by the research is 
experimentally-validated computational modeling toolsets that can be utilized by the bioenergy 
industry to efficiently scale up and operated bioenergy technologies.
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